Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions.

Identifieur interne : 003B69 ( Main/Exploration ); précédent : 003B68; suivant : 003B70

Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions.

Auteurs : Marie-Béatrice Bogeat-Triboulot [France] ; Mikael Brosché ; Jenny Renaut ; Laurent Jouve ; Didier Le Thiec ; Payam Fayyaz ; Basia Vinocur ; Erwin Witters ; Kris Laukens ; Thomas Teichmann ; Arie Altman ; Jean-François Hausman ; Andrea Polle ; Jaakko Kangasj Rvi ; Erwin Dreyer

Source :

RBID : pubmed:17158588

Descripteurs français

English descriptors

Abstract

The responses of Populus euphratica Oliv. plants to soil water deficit were assessed by analyzing gene expression, protein profiles, and several plant performance criteria to understand the acclimation of plants to soil water deficit. Young, vegetatively propagated plants originating from an arid, saline field site were submitted to a gradually increasing water deficit for 4 weeks in a greenhouse and were allowed to recover for 10 d after full reirrigation. Time-dependent changes and intensity of the perturbations induced in shoot and root growth, xylem anatomy, gas exchange, and water status were recorded. The expression profiles of approximately 6,340 genes and of proteins and metabolites (pigments, soluble carbohydrates, and oxidative compounds) were also recorded in mature leaves and in roots (gene expression only) at four stress levels and after recovery. Drought successively induced shoot growth cessation, stomatal closure, moderate increases in oxidative stress-related compounds, loss of CO2 assimilation, and root growth reduction. These effects were almost fully reversible, indicating that acclimation was dominant over injury. The physiological responses were paralleled by fully reversible transcriptional changes, including only 1.5% of the genes on the array. Protein profiles displayed greater changes than transcript levels. Among the identified proteins for which expressed sequence tags were present on the array, no correlation was found between transcript and protein abundance. Acclimation to water deficit involves the regulation of different networks of genes in roots and shoots. Such diverse requirements for protecting and maintaining the function of different plant organs may render plant engineering or breeding toward improved drought tolerance more complex than previously anticipated.

DOI: 10.1104/pp.106.088708
PubMed: 17158588
PubMed Central: PMC1803728


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions.</title>
<author>
<name sortKey="Bogeat Triboulot, Marie Beatrice" sort="Bogeat Triboulot, Marie Beatrice" uniqKey="Bogeat Triboulot M" first="Marie-Béatrice" last="Bogeat-Triboulot">Marie-Béatrice Bogeat-Triboulot</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut National de la Recherche Agronomique Nancy, Unité Mixte de Recherche 1137 Institut National de la Recherche Agronomique-Université Henri Poincaré Ecologie et Ecophysiologie Forestières, F-54280 Champenoux, France. triboulo@nancy.inra.fr</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut National de la Recherche Agronomique Nancy, Unité Mixte de Recherche 1137 Institut National de la Recherche Agronomique-Université Henri Poincaré Ecologie et Ecophysiologie Forestières, F-54280 Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brosche, Mikael" sort="Brosche, Mikael" uniqKey="Brosche M" first="Mikael" last="Brosché">Mikael Brosché</name>
</author>
<author>
<name sortKey="Renaut, Jenny" sort="Renaut, Jenny" uniqKey="Renaut J" first="Jenny" last="Renaut">Jenny Renaut</name>
</author>
<author>
<name sortKey="Jouve, Laurent" sort="Jouve, Laurent" uniqKey="Jouve L" first="Laurent" last="Jouve">Laurent Jouve</name>
</author>
<author>
<name sortKey="Le Thiec, Didier" sort="Le Thiec, Didier" uniqKey="Le Thiec D" first="Didier" last="Le Thiec">Didier Le Thiec</name>
</author>
<author>
<name sortKey="Fayyaz, Payam" sort="Fayyaz, Payam" uniqKey="Fayyaz P" first="Payam" last="Fayyaz">Payam Fayyaz</name>
</author>
<author>
<name sortKey="Vinocur, Basia" sort="Vinocur, Basia" uniqKey="Vinocur B" first="Basia" last="Vinocur">Basia Vinocur</name>
</author>
<author>
<name sortKey="Witters, Erwin" sort="Witters, Erwin" uniqKey="Witters E" first="Erwin" last="Witters">Erwin Witters</name>
</author>
<author>
<name sortKey="Laukens, Kris" sort="Laukens, Kris" uniqKey="Laukens K" first="Kris" last="Laukens">Kris Laukens</name>
</author>
<author>
<name sortKey="Teichmann, Thomas" sort="Teichmann, Thomas" uniqKey="Teichmann T" first="Thomas" last="Teichmann">Thomas Teichmann</name>
</author>
<author>
<name sortKey="Altman, Arie" sort="Altman, Arie" uniqKey="Altman A" first="Arie" last="Altman">Arie Altman</name>
</author>
<author>
<name sortKey="Hausman, Jean Francois" sort="Hausman, Jean Francois" uniqKey="Hausman J" first="Jean-François" last="Hausman">Jean-François Hausman</name>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</author>
<author>
<name sortKey="Kangasj Rvi, Jaakko" sort="Kangasj Rvi, Jaakko" uniqKey="Kangasj Rvi J" first="Jaakko" last="Kangasj Rvi">Jaakko Kangasj Rvi</name>
</author>
<author>
<name sortKey="Dreyer, Erwin" sort="Dreyer, Erwin" uniqKey="Dreyer E" first="Erwin" last="Dreyer">Erwin Dreyer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17158588</idno>
<idno type="pmid">17158588</idno>
<idno type="doi">10.1104/pp.106.088708</idno>
<idno type="pmc">PMC1803728</idno>
<idno type="wicri:Area/Main/Corpus">003C63</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003C63</idno>
<idno type="wicri:Area/Main/Curation">003C63</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003C63</idno>
<idno type="wicri:Area/Main/Exploration">003C63</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions.</title>
<author>
<name sortKey="Bogeat Triboulot, Marie Beatrice" sort="Bogeat Triboulot, Marie Beatrice" uniqKey="Bogeat Triboulot M" first="Marie-Béatrice" last="Bogeat-Triboulot">Marie-Béatrice Bogeat-Triboulot</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut National de la Recherche Agronomique Nancy, Unité Mixte de Recherche 1137 Institut National de la Recherche Agronomique-Université Henri Poincaré Ecologie et Ecophysiologie Forestières, F-54280 Champenoux, France. triboulo@nancy.inra.fr</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut National de la Recherche Agronomique Nancy, Unité Mixte de Recherche 1137 Institut National de la Recherche Agronomique-Université Henri Poincaré Ecologie et Ecophysiologie Forestières, F-54280 Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brosche, Mikael" sort="Brosche, Mikael" uniqKey="Brosche M" first="Mikael" last="Brosché">Mikael Brosché</name>
</author>
<author>
<name sortKey="Renaut, Jenny" sort="Renaut, Jenny" uniqKey="Renaut J" first="Jenny" last="Renaut">Jenny Renaut</name>
</author>
<author>
<name sortKey="Jouve, Laurent" sort="Jouve, Laurent" uniqKey="Jouve L" first="Laurent" last="Jouve">Laurent Jouve</name>
</author>
<author>
<name sortKey="Le Thiec, Didier" sort="Le Thiec, Didier" uniqKey="Le Thiec D" first="Didier" last="Le Thiec">Didier Le Thiec</name>
</author>
<author>
<name sortKey="Fayyaz, Payam" sort="Fayyaz, Payam" uniqKey="Fayyaz P" first="Payam" last="Fayyaz">Payam Fayyaz</name>
</author>
<author>
<name sortKey="Vinocur, Basia" sort="Vinocur, Basia" uniqKey="Vinocur B" first="Basia" last="Vinocur">Basia Vinocur</name>
</author>
<author>
<name sortKey="Witters, Erwin" sort="Witters, Erwin" uniqKey="Witters E" first="Erwin" last="Witters">Erwin Witters</name>
</author>
<author>
<name sortKey="Laukens, Kris" sort="Laukens, Kris" uniqKey="Laukens K" first="Kris" last="Laukens">Kris Laukens</name>
</author>
<author>
<name sortKey="Teichmann, Thomas" sort="Teichmann, Thomas" uniqKey="Teichmann T" first="Thomas" last="Teichmann">Thomas Teichmann</name>
</author>
<author>
<name sortKey="Altman, Arie" sort="Altman, Arie" uniqKey="Altman A" first="Arie" last="Altman">Arie Altman</name>
</author>
<author>
<name sortKey="Hausman, Jean Francois" sort="Hausman, Jean Francois" uniqKey="Hausman J" first="Jean-François" last="Hausman">Jean-François Hausman</name>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</author>
<author>
<name sortKey="Kangasj Rvi, Jaakko" sort="Kangasj Rvi, Jaakko" uniqKey="Kangasj Rvi J" first="Jaakko" last="Kangasj Rvi">Jaakko Kangasj Rvi</name>
</author>
<author>
<name sortKey="Dreyer, Erwin" sort="Dreyer, Erwin" uniqKey="Dreyer E" first="Erwin" last="Dreyer">Erwin Dreyer</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Climate (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (physiology)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (metabolism)</term>
<term>Populus (metabolism)</term>
<term>Soil (analysis)</term>
<term>Water (chemistry)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Climat (MeSH)</term>
<term>Eau (composition chimique)</term>
<term>Eau (métabolisme)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Racines de plante (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (physiologie)</term>
<term>Sol (analyse)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Eau</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Proteins</term>
<term>Plant Roots</term>
<term>Populus</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Eau</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Climate</term>
<term>Ecosystem</term>
<term>Gene Expression Profiling</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Climat</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The responses of Populus euphratica Oliv. plants to soil water deficit were assessed by analyzing gene expression, protein profiles, and several plant performance criteria to understand the acclimation of plants to soil water deficit. Young, vegetatively propagated plants originating from an arid, saline field site were submitted to a gradually increasing water deficit for 4 weeks in a greenhouse and were allowed to recover for 10 d after full reirrigation. Time-dependent changes and intensity of the perturbations induced in shoot and root growth, xylem anatomy, gas exchange, and water status were recorded. The expression profiles of approximately 6,340 genes and of proteins and metabolites (pigments, soluble carbohydrates, and oxidative compounds) were also recorded in mature leaves and in roots (gene expression only) at four stress levels and after recovery. Drought successively induced shoot growth cessation, stomatal closure, moderate increases in oxidative stress-related compounds, loss of CO2 assimilation, and root growth reduction. These effects were almost fully reversible, indicating that acclimation was dominant over injury. The physiological responses were paralleled by fully reversible transcriptional changes, including only 1.5% of the genes on the array. Protein profiles displayed greater changes than transcript levels. Among the identified proteins for which expressed sequence tags were present on the array, no correlation was found between transcript and protein abundance. Acclimation to water deficit involves the regulation of different networks of genes in roots and shoots. Such diverse requirements for protecting and maintaining the function of different plant organs may render plant engineering or breeding toward improved drought tolerance more complex than previously anticipated.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17158588</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>04</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>143</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2007</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions.</ArticleTitle>
<Pagination>
<MedlinePgn>876-92</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The responses of Populus euphratica Oliv. plants to soil water deficit were assessed by analyzing gene expression, protein profiles, and several plant performance criteria to understand the acclimation of plants to soil water deficit. Young, vegetatively propagated plants originating from an arid, saline field site were submitted to a gradually increasing water deficit for 4 weeks in a greenhouse and were allowed to recover for 10 d after full reirrigation. Time-dependent changes and intensity of the perturbations induced in shoot and root growth, xylem anatomy, gas exchange, and water status were recorded. The expression profiles of approximately 6,340 genes and of proteins and metabolites (pigments, soluble carbohydrates, and oxidative compounds) were also recorded in mature leaves and in roots (gene expression only) at four stress levels and after recovery. Drought successively induced shoot growth cessation, stomatal closure, moderate increases in oxidative stress-related compounds, loss of CO2 assimilation, and root growth reduction. These effects were almost fully reversible, indicating that acclimation was dominant over injury. The physiological responses were paralleled by fully reversible transcriptional changes, including only 1.5% of the genes on the array. Protein profiles displayed greater changes than transcript levels. Among the identified proteins for which expressed sequence tags were present on the array, no correlation was found between transcript and protein abundance. Acclimation to water deficit involves the regulation of different networks of genes in roots and shoots. Such diverse requirements for protecting and maintaining the function of different plant organs may render plant engineering or breeding toward improved drought tolerance more complex than previously anticipated.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bogeat-Triboulot</LastName>
<ForeName>Marie-Béatrice</ForeName>
<Initials>MB</Initials>
<AffiliationInfo>
<Affiliation>Institut National de la Recherche Agronomique Nancy, Unité Mixte de Recherche 1137 Institut National de la Recherche Agronomique-Université Henri Poincaré Ecologie et Ecophysiologie Forestières, F-54280 Champenoux, France. triboulo@nancy.inra.fr</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brosché</LastName>
<ForeName>Mikael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Renaut</LastName>
<ForeName>Jenny</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jouve</LastName>
<ForeName>Laurent</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Le Thiec</LastName>
<ForeName>Didier</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fayyaz</LastName>
<ForeName>Payam</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vinocur</LastName>
<ForeName>Basia</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Witters</LastName>
<ForeName>Erwin</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Laukens</LastName>
<ForeName>Kris</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Teichmann</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Altman</LastName>
<ForeName>Arie</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hausman</LastName>
<ForeName>Jean-François</ForeName>
<Initials>JF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Polle</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kangasjärvi</LastName>
<ForeName>Jaakko</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dreyer</LastName>
<ForeName>Erwin</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>12</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002980" MajorTopicYN="N">Climate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17158588</ArticleId>
<ArticleId IdType="pii">pp.106.088708</ArticleId>
<ArticleId IdType="doi">10.1104/pp.106.088708</ArticleId>
<ArticleId IdType="pmc">PMC1803728</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 1999 Mar;19(3):1720-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10022859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9438-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10430961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 1999 Dec;20(18):3551-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10612281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Feb;3(1):73-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10679451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2000 Jul;41(7):864-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10965943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2000 Oct 14;277(1):112-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Dec;124(4):1595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11115877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jun 15;276(24):20831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11259420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jun;126(2):789-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2001 Jun;44(3):368-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11444695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2001 Jul;42(7):686-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11479374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1987;84:561-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11539680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2002 Jan 16;50(2):248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11782190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2002 Feb;25(2):131-139</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11841658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2002 Feb;25(2):251-263</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11841668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 Mar-Apr;48(5-6):551-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11999834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Aug;31(3):279-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12164808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2002 Aug;2(8):1018-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12203897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:159-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Feb;110(2):339-346</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2002 Sep;90(3):301-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12234142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Sep;7(9):405-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12234732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2002 Sep;2(9):1131-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12362332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Oct;130(2):865-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12376651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Dec;130(4):2129-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12481097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Feb;15(2):439-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Oct;18(10):645-652</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Oct;18(10):653-658</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Aug;35(4):452-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12904208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2003 Nov;23(16):1113-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14522717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Jan;55(394):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2003 Dec;44(12):1266-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14701922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Apr;38(2):366-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jan-Feb;6(1):2-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jan-Feb;6(1):81-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 May;9(5):244-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15130550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 May;6(3):269-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15143435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jun;38(5):823-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15144383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2004 Jun;65(11):1449-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15276445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):2318-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Oct 8;323(1):72-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15351703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 Mar;54(5):713-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15356390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 3;279(49):51516-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15371455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Nov;55(407):2331-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15448178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Nov;55(407):2343-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15448181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2005 Mar;5(4):950-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15712235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Mar;41(6):791-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15743445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2005 Apr;16(2):123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2005 May;272(9):2165-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15853801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Aug;56(418):2003-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15967780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr A. 2005 Aug 26;1085(1):137-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16106860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1762-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(12):R101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(4):765-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Dec;6(24):6509-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17163438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1985 Apr;163(4):527-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24249452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2017 Jun;245(6):1067</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28456836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 May;117(1):293-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9576799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1998 Nov 1;264(1):98-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9784193</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<settlement>
<li>Champenoux</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Altman, Arie" sort="Altman, Arie" uniqKey="Altman A" first="Arie" last="Altman">Arie Altman</name>
<name sortKey="Brosche, Mikael" sort="Brosche, Mikael" uniqKey="Brosche M" first="Mikael" last="Brosché">Mikael Brosché</name>
<name sortKey="Dreyer, Erwin" sort="Dreyer, Erwin" uniqKey="Dreyer E" first="Erwin" last="Dreyer">Erwin Dreyer</name>
<name sortKey="Fayyaz, Payam" sort="Fayyaz, Payam" uniqKey="Fayyaz P" first="Payam" last="Fayyaz">Payam Fayyaz</name>
<name sortKey="Hausman, Jean Francois" sort="Hausman, Jean Francois" uniqKey="Hausman J" first="Jean-François" last="Hausman">Jean-François Hausman</name>
<name sortKey="Jouve, Laurent" sort="Jouve, Laurent" uniqKey="Jouve L" first="Laurent" last="Jouve">Laurent Jouve</name>
<name sortKey="Kangasj Rvi, Jaakko" sort="Kangasj Rvi, Jaakko" uniqKey="Kangasj Rvi J" first="Jaakko" last="Kangasj Rvi">Jaakko Kangasj Rvi</name>
<name sortKey="Laukens, Kris" sort="Laukens, Kris" uniqKey="Laukens K" first="Kris" last="Laukens">Kris Laukens</name>
<name sortKey="Le Thiec, Didier" sort="Le Thiec, Didier" uniqKey="Le Thiec D" first="Didier" last="Le Thiec">Didier Le Thiec</name>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<name sortKey="Renaut, Jenny" sort="Renaut, Jenny" uniqKey="Renaut J" first="Jenny" last="Renaut">Jenny Renaut</name>
<name sortKey="Teichmann, Thomas" sort="Teichmann, Thomas" uniqKey="Teichmann T" first="Thomas" last="Teichmann">Thomas Teichmann</name>
<name sortKey="Vinocur, Basia" sort="Vinocur, Basia" uniqKey="Vinocur B" first="Basia" last="Vinocur">Basia Vinocur</name>
<name sortKey="Witters, Erwin" sort="Witters, Erwin" uniqKey="Witters E" first="Erwin" last="Witters">Erwin Witters</name>
</noCountry>
<country name="France">
<region name="Grand Est">
<name sortKey="Bogeat Triboulot, Marie Beatrice" sort="Bogeat Triboulot, Marie Beatrice" uniqKey="Bogeat Triboulot M" first="Marie-Béatrice" last="Bogeat-Triboulot">Marie-Béatrice Bogeat-Triboulot</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003B69 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003B69 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17158588
   |texte=   Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17158588" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020